博物院协会安全专业委员会>>行业动态
 
   
大数据政策利好 探讨安防行业大数据应用及发展
     发布时间:2015-10-13

来源:中国安防行业网 9月5日,国务院印发《促进大数据发展行动纲要》(以下简称《纲要》),系统部署大数据发展工作。根据纲要,到2020年,我国将形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品;并且培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。业内分析,在未来5到10年,大数据产业将可能迎来黄金增长期。安防行业作为大数据紧密相连的领域,未来发展值得期待。

  一、安防行业中大数据的本质

  作为信息时代海量数据的来源之一,安防视频监控产生了巨大的信息数据。特别是近几年随着平安城市、智能交通、智能建筑等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。安防行业大数据的存在已经被越来越多的人熟知,特别是安防行业海量的非结构化视频数据,以及飞速增长的特征数据(卡口过车数据、人像抓拍数据、异常行为数据等),带动了大数据的存储、管理、分析等一系列问题,吸引着更多人的关注。

  据安防行业资深专家李仲男老师分析介绍,大数据的本质是系统通过处理采集到的所有数据,去提取其特征和共性的信息。通过大数据的处理使得所有的数据都有价值。通过大数据的处理,把传统认为没有价值的信息也能够产生非常有价值的信息,这就叫做数据挖掘。同样的数据摆在我们面前不同的挖掘方法,不同的挖掘目标可以为各种各样的业务的应用产生有价值的信息。这就是大数据的本质。

  安防行业代表企业也曾指出大数据概念提出和技术的应用,其实是信息大爆炸必须经历的技术进化,人们为了获取更丰富的数据,促进了计算机、互联网、物联网技术的飞速发展,而获取数据后,人们如何获取数据隐含的各种信息?如何更为深刻、全面的洞察数据隐含的内容?这些都为人类提升全面的洞察分析能力提供了前所未有的空间与潜力,当然,如此庞大的数据意味着更多的机会,提纯后的数据价值更大,意味着更有分析意义。而这些将成为从业人员的价值宝藏,通俗点说就是数据金矿,意味着财富,人们对海量数据的挖掘和使用,是促使行业增长、促使大众更多消费的手段,从而推动社会的不断前进。其实这是一种相互推进的关系,深刻、全面的洞察数据隐含内容后,用科技等手段去推动社会的快速发展,同时社会要更进一步发展则需要去更深层次的钻研大数据。

  在安防领域中,主要的数据来源是视频,据IMSResearch统计,2011年全球摄像头的出货量达到2646万台,预计到2015年摄像头出货量达5454万台。2011年一天产生的视频监控数据超过1500PB,而累计历史数据将更为庞大,在视频监控大联网、高清化推动下,视频监控业务步入数据洪水时代不可避免。

  目前来看,视频监控主要分布于平安城市、智慧城市和智能交通等大型安防项目。当前,智慧城市建设已成为地方政府推进城镇化发展的重要途径,而随着智慧城市的发展,对高清摄像机和智能化监控设备的需求会持续增长,智能交通行业将成为新时期政府投资的重点领域,这将使未来几年视频监控行业仍保持高景气度。2012年中国安防智能化从核电站、机场与港口等,再到工业设施、教育、医疗等终端市场,已经渗透到居民小区、零售店铺、仓库管理、物流等民用市场。可以说中国智能安防市场应用百花齐放。而在园区监控中,智能化应用同样光彩斐然。园区监控市场,包括企业园区、校园园区、政府机关园区、监狱、港口、机场等多个行业的主要监控应用。

  二、安防大数据的特征

  大数据涵盖了4V面向,分别是处理时效(Velocity)、数据格式(Variety)、数据量(Volume)与真实性(Veracity),通过快速的采集、发现和分析,从大量化、多类别的数据中提取价值。安防大数据时代最显著的特征就是数据共享,提高数据处理能力。天网工程就是最具代表性的案例,近年来天网工程已经在全国多个城市推广。安防行业的大数据以视频监控为主,视频监控数据有两个方面的内涵——海量和非结构化。视频监控数据量规模庞大,并且随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长;与通常讲的结构化数据不同,视频监控业务产生的数据绝大多数以非结构化的数据为主,这给传统的数据管理和使用机制带来了极大的挑战。

  与科学计算、互联网相比,视频监控的大数据处理难度尤大,首先,视频录像是更原始的非文本非结构化的数据,必须经过复杂繁重的分析处理才能提取出文本结构化的数据进行下一步处理;其次视频录像相对其它形式数据的容量要大几个数量级,对传输、存储和计算的带宽要求大。

  三、安防大数据的主要应用

  从安防大数据来源主要是视频监控来看,大数据技术和视频监控业务的融合一直是安防大数据未来应用的主要途径。视频监控业务是一个典型的数据依赖型业务,依靠数据说话。可以说,大数据与视频监控业务有着天然的结合。综合来看,大数据与视频监控业务的结合主要体现在“存”、“看”、“用”上。在存储领域,在大数据技术支撑下,网络视频监控数据存储模型可转向分布式的数据存储体系,提供高效、安全、廉价的存储方式。

  在视频监控业务中,错看漏看、来不及看等是常见的困扰点。大数据监控图像的回溯给许多安防监控管理人员带来了生理与心理的双重挑战。在大量人力投入的公安案件追溯中,都常常耳闻“看到吐”、“看到晕”等无奈和感叹。可想而知一般零售行业、金融行业等,对于视频监控图像的回溯就更为困难。在视频监控大数据趋势已经来临之际,依靠视频浓缩检索技术,利用图像处理(包括视频浓缩、摘要、复原等)、模式识别、海量数据分类存储以及搜索等技术,对海量的存储录像等原始信息进行分析和挖掘,对于目标特征、目标行为、目标间关联关系这三大类信息内容,形成各种分类的特征信息库、元数据和索引等,并提供统一接口供外部应用进行搜索,以期通过有限的线索,达到快速关联和定位。

  视频监控业务中,看只是信息采集的方式之一,用才是业务应用的根本。视频监控业务的效率问题已经成为阻碍产业发展的关键瓶颈。随着视频监控摄像机覆盖广度、密度增大,视频图像数据量呈指数级上升,而视频监控数据的使用效率却在下降。目前,安防大数据主要应用领域有以下几种:

  智能交通

  在智能交通中目前应用比较广泛的是卡口和电警的应用。针对交通行业的海量数据处理需求,智能交通管理系统可以在海量数据、恶劣网络环境和复杂业务处理情况下,实现大量图片、车辆数据、视频数据的时时网络传输和快速持久化存储,同时对任意站点的图像进行显示,对任意站点的视频进行流畅播放、实时进行比对报警,快速进行多条件检索,并且将各类多媒体数据和车辆数据合二为一。系统实现对目前的城市道路交通中异常行为的智能识别和自动报警等,从而减轻了交管监控人员的工作负担,提高了监测的准确度,使得交通管理工作更高效。比如,实时交通状况分析可通过视频实时分析道路交通流量,然后综合分析统计出全城市的交通状况;套牌分析可通过视频进行车牌识别,按照一定的规则(如最近时间内一定距离以外)在全城市中检索相同车牌的汽车。

  公安执法

  犯罪嫌疑人追查,可通过输入嫌疑人照片进行人脸特征识别并在所有视频中寻找该人脸;犯罪嫌疑车辆追查可输入嫌疑车的照片或颜色车型等相关特征在所有视频中寻找;人车物的轨迹分析即在所有视频中按照特征查找指定的人车物并绘制其时空轨迹;车辆的首次入城分析等。

  视频监控云服务领域

  实现基于大数据的视频监控云服务,让摄像机仅通过互连网就能连接云端的视频监控托管服务,通过快速、智能地分析部署在云端的大数据,为小型企业、零售商店、餐馆酒店等提供实时的监控视频和潜在的风险管理,甚至能提供收费的基于视频内容的分析报告,如日常的客户数,平均队列长度等,创造新的商业模式。

  四、安防大数据面临的主要问题

  飞速增长的视频监控数据,使得传统视频监控体系架构、数据的管理方式、数据分析应用等面临新的困境。

  困境一:数据量的急剧扩大和IT投资之间的矛盾。

  按照IT产业的法则:在满足客户需求的前提之下,往往技术成本越低,其生命力往往越强。由于数据量的急速扩大,以及随之而来的大规模计算的需求越来越多,一味采用高配硬件,使得硬件投资成为客户不可承受之重,客户越来越希望在满足需求的前提下,用中低端的硬件来替换高配硬件。

  困境二,海量数据和有效数据之间的矛盾。

  摄像头7X24小时工作,如实记录镜头覆盖范围的发生的一切,仅仅记录信息是不够的,因为对于客户来讲可能大部分信息是无效,有效信息可能只分布在一个较短的时间段内,按照数学统计的说法,信息是呈现幂律分布的,也称之为信息的密度,往往越高密度的信息对客户价值越大。

  困境三,资源利用和效率之间的矛盾,串行计算和并行计算的矛盾。

  视频监控业务网络化、大联网后,网络内的设备越来越多,利用闲置的计算资源,实现资源的最大化利用,关乎运算的效率。在视频监控领域,往往视频分析的效率决定价值,更低的延迟、更准确的分析往往是平安城市这类客户的普遍需求。随着数据量的增加,哪怕对TB级别的数据进行对视频内容的数据分析和检索,采用串行计算的模式都可能需要花费数小时的计算,已远远不能胜任时效性的需求。视频的分析和检索,不能依赖于传统的手段,巨量数据的效率优化,并行计算是视频智能分析的唯一出路。

  困境四,缺乏统一标准的问题。

  随着平安城市发展迅速,越来越多的城市及用户正感受到这一工程带来的安全感。从2005年平安城市建设作为概念走进中国,8年建设中,平安城市建设不仅在技术上实现了突破,在建设理念上也实现了新飞跃。今后几年中,平安城市将不断向智慧城市靠拢。那么建设到何种程度才能算得上智慧呢?离真正智慧城市的路有多遥远呢?智慧城市中必须实现的是数据的共享,跨区域视频监控联网、监控资源整合与共享,政府各部门之间的视频监控资源的共享等等。但是不同的地方城市,不同的行业类别,不同的管理方式都会有不同的监控系统方案,一直都存在行业标准的缺乏问题,数据的融合或者共享中会有兼容性难题,有些甚至是不可实现的。

  大规模视频监控联网的技术难度是比较大的,以实现异构平台互联互通为主要目的的联网接口协议在传统的安防技术规范较少涉及,如果联网接口协议未经验证测试,往往难以实现异构平台的互联互通,就算能够实现互通,在系统功能、稳定性等方面也会存在很多问题。从浙江省发布DB33/T629-2007以来,国内外也陆续发布了可以支持视频监控联网的技术协议,但从成熟度上看都存在一定的问题。结语

  《促进大数据发展行动纲要》的出台对于安防行业来说是一个发展的重大机遇和挑战。针对安防企业需要做的,便是积极加强内功,提高研发能力,加强技术储备,应对更大数据量带来的冲击。后期安防厂家会进行分化,部分传统安防厂家更加专注于某固定安防领域继续深耕,专注于产品和技术,一部分安防厂家会向大安防集成平台转变,专注于业务整合和数据分析处理。相信随着技术的进步和客户更有针对性的需求的提出,大数据可以帮助客户更加精准有效率的达成目的。而把握住了这次机遇的人也许会改变安防行业的前景,创造出安防更好的未来。